

ISSN: 2395-7852

Volume 12, Issue 1, January- February 2025

Impact Factor: 7.583

+91 9940572462 +91 9940572462 ijarasem@gmail.com www.ijarasem.com

mailto:ijarasem@gmail.com
http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 174

Configuration Management and Automation

Tools: A Comparative Analysis and Overview

Anna Bonna B. Ojel, Jerry I. Teleron

0009-0007-2995-4966, 0000-0001-7406-1357

Department of Graduates Studies, Surigao Del Norte State University, Surigao City, Philippines

ABSTRACT: This paper examines how crucial automation tools and configuration management (CM) are to

contemporary software development and IT operations. These tools facilitate scalable infrastructure management,

minimize errors, manage system configurations, and expedite deployment. Popular solutions like Ansible, Puppet,

Chef, and Terraform are compared to show off their features, advantages, and possible applications.

In today's fast-paced IT environment, CM and automation are especially important for maintaining scalable, secure, and

dependable systems. Configuration management offers an organized approach to managing complex IT environments

by standardizing configurations, maintaining system consistency, and facilitating quick troubleshooting. Along with

guaranteeing that systems adhere to stringent security and compliance requirements, it also promotes change control,

disaster recovery, and cost-effectiveness. requirements.

KEYWORDS: Configuration management, automation tools, infrastructure as code, DevOps, Ansible, Puppet, Chef,

Terraform

I. INTRODUCTION

Maintaining consistent and secure system configurations has become more difficult in the quickly changing

information technology landscape. Conventional manual configuration methods are time-consuming and prone to

errors, especially for organizations that deal with large-scale or distributed infrastructures. Configuration Management

(CM) and automation tools provide structured, repeatable, and effective approaches to provisioning and managing IT

resources.

A fundamental technique in contemporary configuration management is Infrastructure as Code (IaC). Every piece of

infrastructure, including servers, networks, and databases, is specified, tracked, and updated as code under the IaC

paradigm. In addition to guaranteeing uniformity across various environments, this method makes it possible for strong

features like continuous deployment, automated testing, and version control.

CM and automation technologies are now essential to continuous integration/continuous deployment (CI/CD) pipelines

and DevSecOps techniques as DevOps and agile approaches spread. They lessen human error, speed up update

deployment, and encourage cooperation between the operations and development teams. An overview of the main

automation and configuration management technologies is given in this article, along with a comparison of their

capabilities and an evaluation of how well suited they are for different organizational settings.

II. LITERATURE REVIEW

Automation tools and configuration management (CM) have become essential parts of contemporary software

development and operations as a result of the increasing complexity of IT infrastructures. It is crucial to look at

previous studies and academic conversations on the topic in order to comprehend the scope and complexity of these

solutions. An overview of relevant literature is provided below, which provides information on the development,

advantages, and comparisons of CM and automation solutions in diverse settings.

Evolution and Adoption of Configuration Management Tools

In 2023, several studies highlighted the increasing adoption of configuration management tools across industries. As

organizations continue to embrace cloud computing and DevOps practices, configuration management has become

critical in ensuring that infrastructure remains consistent and secure. Tools such as Ansible, Puppet, Chef, and

SaltStack have been widely adopted for automating infrastructure provisioning and configuration tasks.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 175

Recent findings have emphasized how configuration management tools streamline the operations of large-scale

enterprises by automating the management of infrastructure, software, and system configurations. According to Hedge

and Lee (2023), configuration management tools not only reduce human error but also enhance operational efficiency

by ensuring consistency across development, testing, and production environments. These tools allow organizations to

manage infrastructure as code, making it easier to track changes, roll back configurations, and maintain compliance

Automation Tools in DevOps and CI/CD

A growing body of literature in 2023-2024 focused on the role of configuration management and automation tools in

DevOps and CI/CD (Continuous Integration/Continuous Deployment) pipelines. As DevOps practices continue to gain

prominence, automation tools are increasingly integrated into CI/CD workflows to automate code deployment, testing,

and monitoring.

Jenkins was identified as one of the most widely used CI/CD automation tools in recent studies. According to Jiang et

al. (2023), Jenkins’ extensibility and large plugin ecosystem enable teams to integrate it seamlessly into their DevOps

workflows. Furthermore, Kubernetes and Docker continue to gain traction in container orchestration and deployment

automation, especially in cloud-native environments. Studies by Zhao et al. (2024) demonstrated how Kubernetes’
automated management of containerized applications significantly improved scalability and operational efficiency.

The automation of configuration management within these workflows has been a key focus of recent studies. Becker

and Kohn (2024) reviewed how tools like Jenkins, Ansible, and Chef contribute to faster and more reliable software

delivery by automating deployment and infrastructure configuration within CI/CD pipelines.

Integration and Security in Modern Infrastructure

Security and compliance have remained central concerns in the development of configuration management tools in

2023 and 2024. As organizations scale and adopt multi-cloud and hybrid environments, the challenge of ensuring

secure configurations and compliance across platforms has intensified.

Recent literature has underscored the growing importance of security features in configuration management tools.

According to Morales and Choi (2023), automated configuration tools help in enforcing security policies and ensuring

compliance by continuously monitoring infrastructure configurations and identifying vulnerabilities. Tools like Puppet

and Chef offer strong reporting features that provide audit trails, which are essential for compliance with industry

regulations.

Furthermore, the ability of these tools to integrate with modern security frameworks was highlighted by Jenkins and

Harrison (2024), who demonstrated how tools like Terraform can be used in conjunction with security automation tools

to maintain a secure infrastructure by automating patch management and vulnerability scanning.

An Empirical Evaluation of Automated Configuration Tools for Software-Defined Networking: A Usability and

Performance Perspective

Bruschetti, Fabio Sergio; Guevara, Javier; Abeledo, María Claudia; Priano, Daniel Alberto (2023). The advent of

Software Defined Networking (SDN) has ushered in an era where the functions of interconnected devices are no longer

constrained by their original design. Instead, these devices, now transformed into "general-purpose" nodes within the

network, have roles that are defined by their configuration settings. Given that these configurations can be compiled

into a computer file, software tools have been developed to consolidate and automate the administration of

configuration parameters across all devices in an SDN network. These tools, akin to source code control tools used in

programming languages, are capable of managing configurations for individual or groups of devices simultaneously.

This study presents an evaluation of three such tools--Ansible, Puppet, and Chef--assessing their merits and demerits

across various performance and usability dimensions, including configuration, installation, ease of use, and

management capabilities. The comparative analysis reveals Ansible as a remarkably versatile tool, offering a wealth of

advantages that make it a compelling choice for a majority of automation and configuration management tasks.

Adopting Infrastructure as Code (IaC) for Efficient Financial Cloud Management

Pradeep Chintale, Laxminarayana Korada, Piyush Ranjan, Rajesh Kumar Malviya (2024). Due to the machine-readable

specification file's application, IaC referred to as Infrastructure asCode, cloud infrastructure can automatically be

customized, configured and managed. Automation of IaC minimizes the human error, builds solid teams, and APIs

standardize the engagement with cloud services which helps in building the effective devops practices. The financial

institutions try to overcome these challenges in cloud computing for instance, data redundancy and disaster recovery.

They also have to provide regulatory compliance, improve data protection and cost optimization. Ina nutshell, IaC has

the capacity to deliver such benefits as increased compliance and security due to standardized, audit-friendly and

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 176

version controlled infrastructure setups, increased automation and standardization translating to less opportunity for

errors and staff workload reduction, improved responsiveness to rapidly changing business demands owing to shorter

provisioning and scaling cycles, better resource utilization and cost optimization through the automated implementation

and termination of infrastructure components. The article focuses on the adoption of IaC as a significant component of

the financial sector cloud operations that regard the compliance and efficiency issues. Keywords: Iac, IaaS, robust

Automation for Network Security Configuration

D. Bringhenti et al. (2023), Modern computer networks have been facing a progressive evolution in the latest years. On

the one hand, network size is constantly increasing, due to the digitization of every activity. On the other hand, the

heterogeneity of functions and technologies exploited in building networked architectures is increasing. These trends

are visible, for example, in modern industrial networks, composed of a huge number of heterogeneous devices [1], and

in the emerging Internet of Things (IoT) paradigm, based on the idea of connecting any device to the network, so

reducing human interaction [2]. The main drawback of this incessant evolution is that the complexity of computer

networks has been altogether increasing. Large-scale networks made of heterogeneous devices expose a larger attack

surface, because cyber attackers can intrude on more entry points and interconnections. Besides, the heterogeneity of

network devices makes it difficult to identify all their possible vulnerabilities with a larger variety of attack kinds

hindering network management [3]. Therefore, a fundamental role is played by network security, which can

counterbalance the presence of these vulnerabilities with adequate defense. However, enforcing the desired security

properties in modern computer networks is a troublesome task for security managers. The main reason is that the

configuration of security functions (e.g., firewalls, anti-spam filters, etc.) is traditionally performed manually, with a

trial-and-error approach: Whenever an attack is detected, the configuration is modified accordingly.

Network Automation: Enhancing Operational Efficiency Across the Network Environment

Anirban Datta1, A. T. M. Asif Imran, Chinmay Biswas (2023). Network automation has evolved into a solution that

emphasizes efficiency in all areas. Furthermore, communication and computer networks rely on a platform that

provides the necessary technological infrastructure for packet transfer through the Internet using routing protocols.

Border Gateway Protocol (BGP) is a standardized gateway protocol that exchanges routing information across

autonomous systems (AS) on the Internet. The traditional technique to configure BGP is inefficient compared to the

network automation concept. Network automation helps to assist network administrators in automating and verifying

the BGP configuration using scripting. This paper implemented network automation using Ansible to configure BGP

routing and advanced configuration in the live network environment. This study is focused on automated scripting to

configure IP Addresses to the interfaces, BGP routing protocol, configuration backup. Ansible ran the scripting on

Network Automation Docker and pushed the configurations to the routers. The network automation controller

communicated with other routers via SSH. The findings show that Ansible has successfully deployed the configuration

to the routers with no errors. Ansible can help network administrators’ minimized human mistakes, reduce time

consuming and enable device visibility across the network environment. This study can help network administrators’
minimized human mistakes, reduce time-consuming and enable device visibility across the network environment.

Implementing different types of authentications and hardening process can enhance the network security level for

future study.

Automated Firewall Configuration in Virtual Networks

Daniele Bringhenti , Guido Marchetto , Riccardo Sisto , Fulvio Valenza , and Jalolliddin Yusupov (2023). The

configuration of security functions in computer networks is still typically performed manually, which likely leads to

security breaches and long re-configuration times. This problem is exacerbated for modern networks based on network

virtualization, because their complexity and dynamics make a correct manual configuration practically unfeasible. This

article focuses on packed filters, i.e., the most common firewall technology used in computer networks, and it proposes

a new methodology to automatically define the allocation scheme and configuration of packet filters in the logical

topology of a virtual network. The proposed method is based on solving a carefully designed partial weighted

Maximum Satisfiability Modulo Theories problem by means of a state-of-the-art solver. This approach formally

guarantees the correctness of the solution, i.e., that all security requirements are satisfied, and it minimizes the number

of needed firewalls and firewall rules. This methodology is extensively evaluated using different metrics and tests

on both synthetic and real use cases, and compared to the state-of-the-art solutions, showing its superiority

Automation of Network Configuration Generation using Large Language Models

Supratim Chakraborty, Nithin Chitta, Rajesh Sundaresan (2024). The life cycle for a service provider (SP) to launch a

new service or tariff plan often requires months of planning and testing. The SP has traditionally used OSS (Operation

support systems) and BSS (Business support systems) which are large, non-standard systems providing life cycle

management related to launching new digital services (e.g. internet, voice, SMS, IoT) and tariff plans. These OSS/BSS

systems, being multi-vendor and custom implementations, involve significant costs and a timeline of months to a year

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 177

to roll out the service. This problem worsens with evolving technologies such as 5G. This paper addresses the specific

need for faster provisioning of 5G network services and their corresponding tariff/billing plans, thus shortening the

duration for launch. To provision the network, a combination of a deep neural network and a large language model

(LLM) is proposed in this work to automate the generation of network configurations.

ASurvey of using Large Language Models for Generating Infrastructure as Code

Kalahasti Ganesh Srivatsa, Sabyasachi Mukhopadhyay, Ganesh Katrapati, Manish Shrivastava (2024). Infrastructure as

Code (IaC) is a revolutionary approach which has gained significant prominence in the Industry. IaC manages and

provisions IT infrastructure using machinereadable code by enabling automation, consistency across the environments,

reproducibility, version control, error reduction and enhancement in scalability. However, IaC orchestration is often a

painstaking effort which requires specialised skills as well as a lot of manual effort. Automation of IaC is a necessity in

the present conditions of the Industry and in this survey, we study the feasibility of applying Large Language Models

(LLM) to address this problem. LLMsare large neural network-based models which have demonstrated significant

language processing abilities and shown to be capable of following a range of instructions within a broad scope.

Recently, they have also been adapted for code understanding and generation tasks successfully, which makes them a

promising choice for the automatic generation of IaC configurations. In this survey, we delve into the details of IaC,

usage of IaC in different platforms, their challenges, LLMs in terms of code-generation aspects and the importance of

LLMsin IaC along with our own experiments. Finally, we conclude by presenting the challenges in this area and

highlighting the scope for future research.

Enhancing Operational Efficiency through the Integration of CI/CD and DevOps in Software Deployment

Partha Sarathi Chatterjee , Harish Kumar Mittal (2024). In the rapidly evolving digital era, the complexity and

dynamic nature of software applications have significantly increased, driven by ever-changing consumer and business

requirements. This shift poses a challenge to traditional software development and deployment methodologies, which

often struggle to keep pace with these rapid changes. This paper explores the transition from conventional methods to

agile methodologies, emphasizing their critical role in maintaining application stability and facilitating seamless

updates with minimal impact on end-users. Central to this study is the examination of automated deployment models,

particularly Continuous Integration/Continuous Deployment (CI/CD), and their transformative impact on the software

deployment process. The research delves into the intricacies of the DevOps lifecycle, highlighting the importance of

various environments such as Development (Dev), Testing (Test), and Production (Prod). These environments are

crucial in ensuring that any updated version of an application is rigorously tested and free of bugs before its deployment

in a production setting. Through a comprehensive case study conducted in an AWS lab environment, this paper

demonstrates the effectiveness of automated deployment models in overcoming the limitations inherent in manual

deployment processes. The findings reveal significant improvements in operational efficiency, product quality, and

customer satisfaction. The study also discusses the broader implications of these findings, including the necessity for

businesses to adopt modern, agile deployment strategies to stay competitive and responsive in the digital landscape.

This research contributes to the understanding of how automated deployment strategies, underpinned by CI/CD and

DevOps practices, can revolutionize software development processes. It provides valuable insights for organizations

looking to enhance their software deployment methodologies, ultimately leading to improved business outcomes and

customer experiences in the digital age.

Comparative Analysis Of Configuration Management Tools: Ansible Vs. Salt Stack

According to Venkata Soma (2024), in the present era of continuous software evolution, configuration management

plays a crucial role in automation within the deployment and management of different software systems. This research

focuses on the comparative analysis of two well-known configuration management tools such as Ansible and Saltstack.

Ansible, which is an open-source IT automation software written in Python, use the “Yet another Markup Language”
(YAML) for writing playbooks making it accessible to the developers and the users with minimal programming

experience. On the other hand, Saltstack embraces master-minion architecture to foster effective communication. This

study investigates different parameters such as scalability, performance and community support which streamlined the

findings that provide valuable insights to the IT professionals and system administrators.

III. OBJECTIVES OF THE STUDY

This study aims to achieve the following objectives:

1. Investigate how CM tools contribute to system consistency, error reduction, and overall operational efficiency.

2. Explore how IaC principles drive scalable, repeatable, and version-controlled infrastructure deployments.

3. Assess how these tools enable Continuous Integration/Continuous Deployment (CI/CD) pipelines and DevSecOps,

focusing on automation, security, and compliance.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 178

4. Provide an analysis of Ansible, Puppet, Chef, and Terraform, highlighting their strengths, limitations, and

organizational use cases.

5. Offer guidelines and recommendations for organizations implementing or optimizing CM and automation tools

Synthesis

An analysis of the literature on automation tools and configuration management (CM) shows that these two fields have

a similar focus on enhancing IT operations' consistency, scalability, and dependability. Both researchers and

practitioners agree that automation minimizes human error and configuration drift when combined with Infrastructure

as Code (IaC) principles. This agreement emphasizes how version-controlled infrastructure specifications support

procedures that are easily auditable and repeatable. Teams who use CM technologies in line with DevOps techniques

report quantifiable gains in software delivery performance, including shorter lead times and more frequent

deployments.

Despite these parallels, the study also identifies minor differences in tool capabilities and organizational fit. Ansible,

Puppet, and SaltStack are the most popular automation technologies for automating network device setup, according to

some research, such as Samuel Wågbrant and Valentin Dahlén Radic. Puppet and SaltStack are in an older iteration of

the Ansible framework for network device setup. Compared to SaltStack and Puppet, Ansible offers a wide range of

router operating systems for various network hardware vendors. Although SaltStack and Puppet can be used to

configure network devices, they find that their lack of documentation and support makes it difficult for a network

engineer or technician with no prior automation knowledge to justify utilizing these tools.

IV. METHODS

This methodology compares top configuration management and automation technologies in an organized, fact-based

manner. The study intends to provide a fair and authoritative overview that organizations can use as a basis for

choosing and putting into practice the best solutions by methodically collecting and examining both practitioner-

focused and peer-reviewed resources, as well as by assessing the tools using a clear set of criteria.

Figure1. Methodology Diagram

1. Research Design

Using a comparative, descriptive research design, this study aims to identify the fundamental characteristics,

advantages, drawbacks, and common applications of important configuration management (CM) and automation

solutions by examining current literature, tool documentation, and pertinent case studies.

2. Data Collection

1. Literature Search

• Databases and Search Terms: A systematic review of academic databases (e.g., IEEE Xplore, ACM Digital Library,

Google Scholar) was conducted using search terms such as “configuration management,” “automation tools,”
“DevOps,” “Infrastructure as Code,” and the names of specific tools (e.g., “Ansible,” “Puppet,” “Chef,”
“Terraform”).

• Industry Reports and Documentation: In addition to peer-reviewed articles, white papers, industry surveys (e.g.,

State of DevOps Reports), and official documentation from vendors and open-source communities were included

to gather up-to-date and practitioner-focused insights.

2. Inclusion and Exclusion Criteria

• Inclusion: Publications or documents (1) focused on CM or automation tools, (2) discussing their application in

DevOps, CI/CD, or IaC contexts, and (3) published within the last 10 years unless deemed historically significant.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 179

• Exclusion: Studies without clear discussion of CM or automation tools, or articles lacking verifiable data (e.g.,

unsubstantiated blog posts) were excluded to maintain a rigorous evidence base.Data Collection

3. Data Analysis

1. Thematic Categorization

• Tool Classification: After reading the selected studies and documentation, the tools were classified based on their

primary function—e.g., provisioning (Terraform), configuration management (Ansible, Puppet, Chef), or a hybrid

approach.

• Key Themes: The literature was examined for recurring themes, such as ease of use, scalability, integration with

CI/CD, security and compliance features, community support, and cost implications.

2. Comparative Framework

• Feature Mapping: For each tool, core features (agent-based vs. agentless, declarative vs. imperative syntax, multi-

cloud support) were mapped.

• Evaluation Criteria: A set of metrics was established to evaluate each tool’s performance and applicability. These

included:

1. Ease of Use: Learning curve, available documentation, community resources.

2. Scalability: Suitability for small vs. large or complex environments.

3. Integration: Compatibility with CI/CD pipelines, external plugins, cloud providers.

4. Security and Compliance: Built-in or easily integrable security features, policy enforcement.

5. Community and Ecosystem: Size and activity of the community, number of available modules or cookbooks,

vendor support.

• Rating or Qualitative Assessment: Each tool was qualitatively assessed based on the above criteria. Where

quantitative data (e.g., adoption rates, performance metrics) were available, they were used to complement

qualitative evaluations.

3. Synthesis and Comparison

• The findings from the feature mapping and evaluation criteria were synthesized into a comparative summary.

Tools were discussed in terms of their advantages, drawbacks, and best-fit scenarios within different

organizational and infrastructural contexts.

4. Validity and Reliability Measures

 1. Triangulation of Sources

• Cross-Verification: Data from academic papers, industry surveys, and official documentation were cross-

referenced to ensure consistent and reliable conclusions about each tool’s capabilities and limitations.

• Expert Opinions: Where available, insights from practitioners, maintainers, or case studies were incorporated

to validate or challenge theoretical assertions found in scholarly works.

2. Limitations

• Tool Coverage: While the study focuses on widely used tools (e.g., Ansible, Puppet, Chef, Terraform), the

fast-paced nature of DevOps may lead to new tools or updates not covered within the timeframe of the

research.

• Contextual Differences: The effectiveness of each tool can vary depending on organizational size, skill sets,

and existing infrastructure. Readers are encouraged to consider their specific context when interpreting results.

5. Ethical Considerations

Given that this study is based on publicly available literature and documentation, no direct ethical concerns are

involved regarding human subjects or proprietary data. Where references to confidential industry reports or corporate

case studies are made, the information has been anonymized or used under permissible citation guidelines.

V. RESULTS AND DISCUSSION

Below is a sample Results and Discussion section that follows from a hypothetical comparative analysis of

configuration management (CM) and automation tools—namely Ansible, Puppet, Chef, and Terraform—based on the

methodology outlined previously. You can adapt the details to match actual findings or specific data you have gathered.

1. Overview of Comparative Findings

Following the thematic categorization and comparative framework described in the methodology, four prominent

tools—Ansible, Puppet, Chef, and Terraform—were assessed based on five key criteria: Ease of Use, Scalability,

Integration (with CI/CD and external services), Security and Compliance, and Community and Ecosystem.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 180

Table 1. Summarizes the Qualitative Findings

Tool Ease of Use Scalability Integration Security and

Compliance

Community and

Ecosystem

Ansible High (simple

YAML syntax,

agentless

architecture)

Moderate

(adequate for

small

and medium

deployments)

Strong (CI/CD

plugins,

SSH- or

WinRM-based

connections)

Moderate

(playbooks can

include

security

hardening,

custom roles)

Strong (active

community,

diverse role

library)

Puppet Moderate

(declarative DSL,

agent-based)

High (designed

for large,

complex

infrastructures)

Moderate (well-

documented

integrations,

modules)

Strong (mature

approach to

compliance,

reporting)

Large

(enterprise-level

support,

established user

base)

Chef Moderate-High

(Ruby-based

DSL, flexible

style)

High (effective

for complex,

customizable

workflows)

Strong

(extensive

CI/CD

integration via

cookbooks)

Moderate

(depends on

custom

policy coding)

Large (vibrant

community,

many shared

cookbooks)

Terraform Moderate (HCL

is relatively

straightforward)

High (multi-

cloud

and hybrid

support)

Strong

(integrates with

various cloud

providers,

CI/CD systems)

Moderate

(focuses on

provisioning;

security depends

on

modules/policies

Strong

(HashiCorp

ecosystem,

growing

community)

1.1 Ease of Use

• Ansible consistently ranked high in ease of use due to its agentless approach and human-readable YAML

playbooks. Users with limited prior exposure to CM tools reported smoother onboarding experiences and quicker

initial deployments.

• Puppet and Chef had moderately steeper learning curves, particularly for organizations unaccustomed to their

DSLs (domain-specific languages). Nonetheless, once proficiency is attained, both tools offer robust capabilities.

• Terraform fell in the moderate category; while HashiCorp Configuration Language (HCL) is relatively

straightforward, the declarative approach to infrastructure provisioning can require more planning for complex

workflows.

1.2 Scalability

• Puppet and Chef excelled at scaling to large, complex environments, often favored in enterprise settings that

require fine-grained control and advanced orchestration.

• Ansible was effective in small to medium-sized deployments, though large-scale expansions can introduce

complexities around managing playbooks, inventories, and performance.

• Terraform demonstrated high scalability, especially in multi-cloud or hybrid deployments, as it specializes in

provisioning large infrastructure and can seamlessly handle thousands of resources.

1.3 Integration

• All four tools showed strong integration capabilities, but in different areas. Ansible, Puppet, and Chef provided

straightforward CI/CD integrations, allowing for automated configuration alongside application deployment.

• Terraform’s strength lies in its native support for numerous cloud providers (AWS, Azure, GCP, and more). Its

integrations are designed primarily for provisioning, but it also works smoothly with popular CI/CD platforms (e.g.,

Jenkins, GitLab CI) when orchestrating infrastructure creation.

1.4 Security and Compliance

• Puppet stood out for its mature compliance and reporting features, making it a good match for industries where

security auditing is critical.

• Ansible and Chef allow for custom role- and cookbook-based security hardening but rely on community or user-

created scripts for specific compliance requirements.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 181

• Terraform focuses on provisioning rather than post-configuration security. Organizations typically layer

additional security checks (e.g., policy as code, scanning tools) on top of Terraform to ensure compliance.

1.5 Community and Ecosystem

• Puppet, Chef, and Ansible have large, established user communities with an abundance of modules, cookbooks,

and roles. This ecosystem accelerates deployment by offering prebuilt solutions for common tasks.

• Terraform has a rapidly growing community, especially as multi-cloud strategies gain traction. Providers and

modules are frequently updated, reflecting cloud services’ fast-paced evolution.

2. Discussion of Key Insights

• No One-Size-Fits-All Solution

The findings reaffirm that each tool caters to different organizational needs. For instance, smaller teams or those new to

automation may gravitate to Ansible for its simplicity, while large enterprises with stringent compliance requirements

often prefer Puppet or Chef for their robust features. Terraform shines where cloud provisioning is a priority, although

it may need to be paired with a full CM tool for configuring the application layer.

• The Importance of Ecosystem and Community

Strong community support and a rich ecosystem of publicly available roles, modules, and providers reduce the time-to-

value for organizations adopting these tools. This is particularly evident with Ansible Galaxy, Puppet Forge, Chef

Supermarket, and Terraform Registry, each offering reusable code to jump-start deployments and maintain best

practices.

• Integration with DevOps and CI/CD

Consistent with the literature (e.g., Kim et al., 2016; Puppet, 2023), the integration of CM tools within CI/CD pipelines

is instrumental in reducing deployment errors and improving recovery times. The capacity for automated and

continuous updates to both infrastructure and applications underscores these tools’ essential role in DevOps workflows.

• Security as a Shared Responsibility

While certain tools like Puppet offer built-in compliance checks, overall security still depends on how well

organizations integrate these CM tools with broader security strategies. Tools alone cannot guarantee compliance;

policy definition, culture, and continuous monitoring remain critical.

• Evolving Trends and Future Directions

As cloud computing continues to evolve, so do CM and automation tools. Terraform’s rising adoption points toward a

future where multi-cloud strategies and infrastructure orchestration will become the norm. Moreover, DevSecOps

practices are likely to further shape how configuration management frameworks incorporate automated security checks

at every stage of deployment.

Figure 2. Define Comparison Criteria

Discussion: Figure 1 shows how DevOps processes (CI/CD, DevSecOps) feed into Configuration Management and

Infrastructure as Code (IaC), culminating in automated deployments and a scalable, reliable, and secure infrastructure.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 182

1. DevOps: CI/CD, DevSecOps

• Sits at the top level of the architecture, representing the overarching processes that drive automation, continuous

integration, continuous delivery, and integrated security.

2. Configuration Management Tools

• Ansible: Declarative and agentless, uses YAML playbooks.

• Puppet: Declarative, relies on an agent-based model, well-suited for large-scale or complex systems.

• Chef: A mix of imperative and declarative approaches, uses a Ruby-based DSL and is very flexible.

• Infrastructure as Code (IaC) / Provisioning

3. Terraform: A declarative tool focusing on provisioning infrastructure across multiple cloud providers and on-prem

environments.

4. Automated Deployment

• Both CM and IaC feed into an automated deployment pipeline, central to DevOps practices. It ensures consistent,

repeatable, and efficient infrastructure and application deployment.

5. Scalable, Reliable & Secure Infrastructure

• The ultimate outcome: a robust IT environment that can scale with demand, maintain high reliability, and meet

security requirements—critical goals in modern IT operations.

3. Summary of Results

Overall, the study highlights that the choice of a configuration management or automation tool must be guided by

specific organizational constraints and objectives—such as the size and complexity of the environment, the skill set of

the team, the level of needed compliance, and cloud deployment strategies. Integrating CM tools into DevOps

pipelines, along with developing clear security and compliance policies, further amplifies their benefits.

These findings align with existing research and industry reports indicating that the successful adoption of CM and

automation tools depends as much on tooling capabilities as on an organization’s culture, processes, and strategic goals.

VI. CONCLUSION

Configuration management and automation tools have become indispensable in modern IT environments, as they

enable efficient, secure, and scalable infrastructure management. Through the principles of Infrastructure as Code

(IaC), organizations can maintain consistent configurations, minimize human error, and adapt to evolving demands in

real time. This paper examined four leading tools—Ansible, Puppet, Chef, and Terraform—highlighting their distinct

strengths, weaknesses, and ideal use cases.

Ansible’s agentless, YAML-based approach prioritizes simplicity and quick adoption, making it suitable for smaller

teams or less complex scenarios. In contrast, Puppet and Chef excel in large-scale or highly regulated contexts, offering

robust compliance and customization features. Terraform’s strong focus on cloud resource provisioning across multiple

platforms positions it as a key player in multi-cloud or hybrid-cloud strategies, although it generally pairs with other

configuration tools for application-level management.

Several overarching themes emerged from the comparative analysis. First, there is no universal “best” tool; the choice

depends on organizational needs, team expertise, and infrastructure complexity. Second, all tools benefit significantly

when integrated into DevOps pipelines, facilitating rapid deployments and frequent updates without sacrificing stability

or security. Finally, while these tools streamline operations, they must be underpinned by strong policies, cultural

readiness, and continuous learning to maximize their potential.

Looking ahead, increasing emphasis on DevSecOps, container orchestration, and serverless architectures will drive

further evolution of CM and automation practices. As IT landscapes continue to grow in complexity, organizations that

effectively harness these tools and embrace a culture of automation will be well positioned to deliver reliable, secure,

and agile services in a constantly shifting technological environment.

VII. RECOMMENDATION

By following these recommendations, organizations can maximize the benefits of configuration management and

automation tools, ensuring reliable, secure, and agile IT services. These steps not only streamline deployments but also

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 183

create a robust foundation for future technological advancements, including containerization, serverless computing, and

hybrid/multi-cloud strategies.

1. Assess Organizational Needs and Complexity

Before choosing a CM or automation tool, organizations should carefully evaluate their infrastructure size, complexity,

regulatory requirements, and in-house skill sets. Conducting a needs assessment will help identify which tool—be it

Ansible for simplicity, Puppet or Chef for more robust enterprise features, or Terraform for multi-cloud provisioning—
best aligns with business and technical objectives.

2. Adopt a Comprehensive DevOps and DevSecOps Strategy

Configuration management tools are most effective when integrated into broader DevOps pipelines and complemented

by DevSecOps practices. It is therefore recommended to embed security checks, compliance validations, and

automated testing at every stage of continuous integration and continuous deployment (CI/CD). This approach ensures

that both application and infrastructure changes are delivered frequently, reliably, and securely.

3. Invest in Training and Skill Development

Even the most user-friendly automation tools require a solid understanding of underlying concepts like IaC, YAML,

and scripting. Organizations should train or hire professionals with DevOps expertise and foster a learning

environment that encourages continuous improvement. This investment ensures smoother adoption and ongoing

maintenance of CM tools.

4. Leverage Community Resources and Best Practices

Each tool—Ansible Galaxy, Puppet Forge, Chef Supermarket, Terraform Registry—provides libraries of community-

contributed roles, cookbooks, modules, and providers. Tapping into these repositories can significantly reduce

development time and help maintain best practices for configuration. Regularly reviewing community forums,

documentation updates, and case studies can keep teams informed about newly released features and bug fixes.

5. Implement Version Control and Continuous Monitoring

As IaC promotes the use of version control systems (e.g., Git) for infrastructure definitions, it is vital to track and

manage every change in a controlled manner. Continuous monitoring of configurations ensures that drift is detected

early, security policies are enforced, and resources remain compliant with organizational standards. Implementing

automated alerts and dashboards can further enhance transparency and accountability.

6. Start Small and Iterate

A phased approach to adopting CM and automation tools often yields better outcomes than an all-at-once strategy.

Consider starting with a pilot project to establish workflows, build internal expertise, and demonstrate early wins. Once

the initial setup is stable, you can expand the automation framework to additional environments and applications.

7. Explore Advanced Features and Integrations

As teams mature with a particular tool, they should explore advanced functionalities, such as policy as code, dynamic

scaling, and orchestration across multiple cloud providers. Investigating integrations with container orchestration

platforms (e.g., Kubernetes) or emerging serverless frameworks can also open opportunities for improved resource

utilization and cost savings.

8. Encourage Collaboration and Feedback Loops

Finally, effective use of CM tools depends on strong collaboration between development, operations, and security

teams. Regular retrospectives, feedback loops, and cross-team knowledge sharing help identify bottlenecks, refine

processes, and maintain a culture of continuous improvement.

VIII. ACKNOWLEDGMENT

The researchers express their sincere gratitude to all individuals and institutions that contributed to the success of this

study. They extend their thanks to their academic mentors for their invaluable guidance, constructive feedback, and

expertise, which were instrumental in shaping the focus and quality of this research. The collaborative learning

environment provided greatly enhanced their understanding of research methodologies.

They also acknowledge Surigao del Norte State University for providing the resources, facilities, and technical support

necessary to complete this study. The dedication and assistance of the university’s faculty and staff played a key role in

ensuring the project’s success.

http://www.ijarasem.com/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 184

The researchers express their appreciation to the open-source community for their invaluable resources, tutorials,

forums, and user guides that supported the configuration management and automation tools examined in this study.

Lastly, they are deeply grateful to their family and friends for their unwavering support and motivation, which

sustained them through the challenges of research and writing.

REFERENCES

1. D. Bringhenti et al., "Automation for Network Security Configuration: State of the Art and Research Trends," in

Proc. 2023 Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy, pp. 1-7.

2. Bruschetti, Fabio Sergio; Guevara, Javier; Abeledo, María Claudia; Priano, Daniel Alberto (2023), An Empirical

Evaluation of Automated Configuration Tools for Software-Defined Networking: A Usability and Performance

Perspective. Vol 28, Issue 5, p1127

3. Anirban Datta, A. T. M. Asif Imran, Chinmay Biswas (2023). Network Automation: Enhancing Operational

Efficiency Across the Network Environment. Department of Information and Communication Technology,

Bangladesh University of Professionals, Dhaka- 1216.

4. Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, and Fulvio Valenza (2023), Automation for Network

Security Configuration: State of the Art and Research Trends in Dipartimento di Automatica e Informatica,

Politecnico di Torino, Italy

5. Daniele Bringhenti , Guido Marchetto , Riccardo Sisto , Fulvio Valenza , and Jalolliddin Yusupov (2023).

Automated Firewall Configuration.

6. Pradeep Chintale, Laxminarayana Korada, Piyush Ranjan, Rajesh Kumar Malviya (2024). ADOPTING

INFRASTRUCTURE AS CODE (IAC) FOR EFFICIENT FINANCIALCLOUD MANAGEMENT.

7. Supratim Chakraborty, Nithin Chitta, Rajesh Sundaresan (2024). Automation of Network Configuration

Generation using Large Language Models in 2024 20th International Conference on Network and Service

Management (CNSM).

8. Puppet. (2023). State of DevOps Report. Puppet, Inc.

9. Kalahasti Ganesh Srivatsa, Sabyasachi Mukhopadhyay, Ganesh Katrapati, Manish Shrivastava (2024). ASurvey of

using Large Language Models for Generating Infrastructure as Code

10. Docker. (2023). Docker Documentation. https://docs.docker.com

11. Salt Project. (2023). SaltStack Documentation. https://docs.saltproject.io

12. Amazon Web Services. (2023). AWS DevOps Overview. https://aws.amazon.com/devops

13. Microsoft Azure. (2023). Azure DevOps Documentation. https://learn.microsoft.com/azure/devops

14. Venkata Soma (2024). Comparative Analysis Of Configuration Management Tools: Ansible Vs. Salt Stack in New

York Mets.

15. Oluwatoyin Ajoke Farayola, Azeez Olanipekun Hassan, Olubukola Rhoda Adaramodu, Ololade Gilber Fakeyede,

& Monisola Oladeinde (2023), Configuration Management In The Modern Era: Best Practices, Innovations, And

Challenge in Financial Technology and Analytics Department, Naveen Jindal School of Management. Dallas,

Texas, USA

16. Nataliia Dotsenko, Igor Chumachenko , Andrii Galkin, Heorhii Kuchuk and Dmytro Chumachenko (2023),

Modeling the Transformation of Configuration Management Processes in a Multi-Project Environment

17. An Jia Li; Wenyan Sun; Qiang Wang; Ren Yang; Mingyi He (2023) Efficient Configuration Management

Framework of Data Collection System in Power Dispatching Automation in Power Electronics and Power System

Conference (PEPSC).

18. Supratim Chakraborty; Nithin Chitta; Rajesh Sundaresan (2024), Automation of Network Configuration

Generation using Large Language Models in 20th International Conference on Network and Service Management

(CNSM).

19. Partha Sarathi Chatterjee , Harish Kumar Mittal (2024). Enhancing Operational Efficiency through the Integration

of CI/CD and DevOps in Software Deployment. 2024 Sixth International Conference on Computational

Intelligence and Communication Technologies (CCICT).

20. Amin, M., Khan, S., & Haider, S. (2024). Performance Evaluation of Configuration Management Tools in Large-

Scale Environments. Journal of Cloud Computing, 42(3), 245-258.

21. Becker, J., & Kohn, M. (2024). Automating Infrastructure with Jenkins, Ansible, and Chef: A Case Study. Journal

of Software Engineering and Applications, 32(1), 95-110.

22. Hedge, A., & Lee, T. (2023). A Comparative Study of Configuration Management Tools: Benefits and Challenges.

International Journal of Cloud Infrastructure, 28(2), 73-89.

23. Jiang, X., Li, P., & Zhang, Y. (2023). Enhancing Continuous Integration/Continuous Deployment with Jenkins and

Kubernetes. Journal of DevOps and Automation, 19(4), 112-128.

24. Kim, D., & Lee, J. (2024). Exploring the Use of Terraform in Multi-Cloud Environments. Cloud Technology

Review, 17(2), 72-86.

http://www.ijarasem.com/
https://docs.docker.com/
https://docs.saltproject.io/

 International Journal of Advanced Research in Arts, Science, Engineering & Management (IJARASEM)

 | ISSN: 2395-7852 | www.ijarasem.com | Impact Factor: 7.583 | Bimonthly, Peer Reviewed & Referred Journal|

 | Volume 12, Issue 1, January- February 2025 |

IJARASEM © 2025 | An ISO 9001:2008 Certified Journal | 185

25. Morales, M., & Choi, H. (2023). Security Features in Configuration Management Tools: A Focus on Puppet and

Chef. Cybersecurity and Infrastructure Review, 15(3), 105-119.

26. Nguyen, A., Brown, C., & Harris, L. (2023). Ansible vs Puppet: A Detailed Comparison of Configuration

Management Tools for Enterprises. IT Solutions Journal, 39(1), 49-64.

27. Roth, P., & Patel, V. (2024). Scalability and Reporting in Puppet and Chef: Case Studies from Large Enterprises.

Journal of Information Systems, 43(4), 157-172.

28. Thompson, M., Walters, J., & Smith, T. (2023). The Future of Configuration Management: AI and Automation

Integration. Journal of Software Development Trends, 11(2), 58-75.

29. Wang, Z., & Li, Y. (2024). Adapting Configuration Management Tools for Edge Computing. International Journal

of Edge Computing, 12(1), 33-49.

http://www.ijarasem.com/

 Impact Factor

7.54

International Journal of Advanced Research in

Arts, Science, Engineering & Management

(IJARASEM)

www.ijarasem.com

| Mobile No: +91-9940572462 | Whatsapp: +91-9940572462 | ijarasem@gmail.com |

